Q.P. Code: 16HS612

Q.P. Code: 16HS612

6 a

R16 OR Perform four iterations of Newton-Raphson method to find a real root of the equation $xe^x - \cos x = 0$.

6M

6M

6M

A jet fighter's position on an aircraft carrier's runway was timed during landing: b **6M** 10

1, 5	0	1	2	4	
x, m	150	185	249	273	

where x is the distance from the end of the carrier. Estimate distance travelled when t = 3 using Lagrange's interpolation.

UNIT-IV

wing data.

y 2.4 3.4 7 11.1 19.6 Find the approximate value of the integral $\int_{0}^{1} \frac{1}{1+x^2} dx$ using Simpson's $\frac{1}{3}$ rule **6M** b

With h = 0.25. Hence compare with its true value.

OR

8 Fit a power curve to the following data. a

x	1	2	3	4	5	6
у	2.98	4.26	5.21	6.10	6.80	7.50
			1/			

6M Find the approximate value of the integral $\int x^2 \log x dx$ using Trapezoidal rule b With h = 1.

UNIT-V

- a Compute y(1.1) and y(1.2) by Taylor's series method, where y(x) is the solution 9 **6M** of the initial value problem $y^1 = x + y$, y(1) = 0.
 - **b** Using Runge-Kutta method of second order, compute y(2.5) from

 $y' = \frac{y+x}{x}$, y(2) = 2, assuming h = 0.25.

OR

10 a Given the differential equation $y^1 = y^2 + x$, y(0) = 1. Determine y(0.1) and **6M** y(0.2) using Euler's method.

b Using fourth order Runge-Kutta method estimate y(0.2) and y(0.4) for the initial **6M**

value problem $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0) = 1.

*** END ***